UP - logo
E-viri
Celotno besedilo
Recenzirano
  • Mafic magmatic enclaves and...
    Barbarin, Bernard

    Lithos, 03/2005, Letnik: 80, Številka: 1
    Journal Article

    The calc-alkaline granitoids of the central Sierra Nevada batholith are associated with abundant mafic rocks. These include both country-rock xenoliths and mafic magmatic enclaves (MME) that commonly have fine-grained and, less commonly, cumulate textures. Scarce composite enclaves consist of either xenoliths enclosed in MME, or of MME enclosed in other MME with different grain size and texture. Enclaves are often enclosed in mafic aggregates and form meter-size polygenic swarms, mostly in the margins of normally zoned plutons. Enclaves may locally divert schlieren layering. Mafic dikes, which also occur in swarms, are undisturbed, composite, or largely hybridized. In central Sierra Nevada, with the exception of xenoliths that completely differ from the other rocks, host granitoids, mafic aggregates, MME, and some composite dikes exhibit a bulk compositional diversity and, at the same time, important mineralogical and geochemical (including isotopic) similarities. MME and host granitoids display distinct major and trace element compositions. However, strong correlations between MME–host granitoid pairs indicate interactions and parallel evolution of MME and enclosing granitoid in each pluton. Identical mafic mineral compositions and isotopic features are the result of these interactions and parallel evolution. Mafic dikes have broadly the same major and trace element compositions as the MME although variations are large between the different dikes that are at distinctly different stages of hybridization and digestion by the host granitoids. The composition of the granitoids and various mafic rocks reflects three distinct stages of hybridization that occurred, respectively, at depth, during ascent and emplacement, and after emplacement. The occurrence and succession of hybridization processes were tightly controlled by the physical properties of the magmas. The sequential thorough or partial mixing and mingling were commonly followed by differentiation and segregation processes. Unusual MME that contain abundant large crystals of hornblende resulted from disruption of early cumulates at depth, whereas those richer in large crystals of biotite were formed by disruption of late mafic aggregates or schlieren layerings at the level of emplacement. MME and host granitoids are considered cogenetic, because both are hybrid rocks that were produced by the mixing of the same two components in different proportions. The felsic component was produced by partial melting of preexisting crustal materials, whereas the dominant mafic component was probably derived from the upper mantle. However, in the lack of a clear mantle signature, the origin of the mafic component remains questionable.