UP - logo
E-viri
Recenzirano Odprti dostop
  • Effect of Ultrasonic Excita...
    Luo, Zhao; Tang, Qiang; Hu, Junhui

    Micromachines (Basel), 07/2021, Letnik: 12, Številka: 7
    Journal Article

    In this paper, a method to increase the output power of a button zinc–air battery by applying acoustofluidics induced by ultrasonic excitation to the battery is proposed and demonstrated. In the structural design of the device, a flat piezoelectric ring was bonded onto the top of the outer surface of the cathode shell to excite an ultrasonic field in the battery. The maximum output power of the zinc–air battery increased by 46.8% when the vibration velocity and working frequency were 52.8 mm/s (the corresponding vibration amplitude was 277 nm) and 161.2 kHz and the rating capacity increased by about 20% with the assistance of the acoustofluidic field induced by ultrasonic excitation. Further analyses indicated that the discharge performance improvement can be attributed to the acoustic microstreaming vortices and the decrease of the viscosity coefficient in the electrolyte solution, which were both caused by ultrasonic excitation of the piezoelectric ring.