UP - logo
E-viri
Recenzirano Odprti dostop
  • Availability and evaluation...
    Cools, N; De Vos, B

    IForest (Viterbo), 11/2011, Letnik: 4, Številka: 5
    Journal Article

    In the study of air pollution effects on forest ecosystems, solid soil data such as cation exchange capacity, base saturation and other exchangeable cation fractions, soil texture, soil moisture, soil weathering rates, C/N ratio and other variables form an important information base for many air pollution impact models. This paper shows some of the possibilities and the limitations of the soil data that European countries collected on the systematic Level I and on the intensive and permanent Level II monitoring plots within the ICP Forests programme. The soil data date from a first inventory in the 1990s and from a second inventory more than 10 years later. Both surveys were conducted following a common manual on sampling and analysis of soil. An example of the changes in pH(CaCl2) and base saturation in the forest floor and mineral soil on more than 2000 plots till a depth of 80 cm between the two surveys is presented. In this period the pH(CaCl2) significantly increased in the very acid forest soils with pH(CaCl2) below 4.0 but further decreased in forest soils with pH(CaCl2) above 4.0. Following the trend in pH, the base saturation increased in soils with a very low buffering capacity (soils with a base saturation below 20% in the first inventory) and decreased in forest soils with reference base saturation values above 20%. There is both a decrease of soil pH and base saturation in the forest floor of the Arenosols and Podzols. In the Podzols this decreasing trend could not be established in the mineral soil, though this decreasing trend persisted in a number of mineral soil layers of the Arenosols. The only consistent increasing trend of pH and base saturation when stratifying according to the WRB reference soil groups was seen in the forest floor of the Luvisols and Cambisols.