UP - logo
E-viri
Celotno besedilo
Recenzirano
  • Modulation of Secondary Met...
    Ullah, Asad; Bano, Asghari

    Current microbiology, 12/2021, Letnik: 78, Številka: 12
    Journal Article

    An experiment was conducted to evaluate the role of bacterial secondary metabolites against induced salt stress. Five bacterial strains were isolated from three different habitats: Khewra salt range, oily sludge field in Chakwal, and garden soil of Quaid-i-Azam University Islamabad, Pakistan. The 16S rRNA gene and BLAST analysis of bacterial strains showed 99% sequence similarity with Pseudomonas putida AMUPP-2 (KM435273), Lysinibacillus sphaericus OUG29GKBB (KM972671), Bacillus pumilus MB431 (KP723538) isolated from salt range, Pseudomonas fluorescens B8 (KF010368) from garden soil and Exiguobacterium aurantiacum SPD2 (KX121703) from oily sludge, respectively. Pseudomonas fluorescens produced 294.98 µg/g of proline in the M9 medium supplemented with 125 mM NaCl, but its growth rate was decreased from 1.81 to 0.37. The P. putida showed faster growth rate even than control at 125 mM NaCl. B. pumilus and L. sphaericus did not show any decline in growth rate up to 100 mM NaCl. The synthesis of new amino acids were recorded at 125 mM NaCl stress, e.g., Pro, Leu, Arg in P. fluorescens and L. sphaericus, Pro, Lys, Phe, Ala in P. putida , Lys, Ala in B. pumilus, Met, Val, and Ala in E. aurantiacum . Liquid chromatography-mass spectrometry analysis of ethyl acetate extract of P. putida and L. sphaericus demonstrated that NaCl (125mM) induced the production of 3-oxo-C 12 homoserine lactone, oxosteroids, and steroid esters in addition to steroidal alkaloid lysophosphatidylcholines, antibiotics phenazine-1 carboxamide, 2,4-diacetyl phloroglucinol, carbazole, phosphatidylcholine, phosphatidyl ethanol amine, and salicylic acid as signaling compound. It was concluded that P. putida and L. sphaericus could be exploited for the production of secondary metabolites that have a wide range of implications in biotic and abiotic stresses and for the production of important pharmaceutical products.