UP - logo
E-viri
Celotno besedilo
Recenzirano
  • Clinical Accuracy, Technica...
    Molina, Camilo A; Sciubba, Daniel M; Greenberg, Jacob K; Khan, Majid; Witham, Timothy

    Operative neurosurgery (Hagerstown, Md.), 03/2021, Letnik: 20, Številka: 3
    Journal Article

    Abstract BACKGROUND Augmented reality mediated spine surgery is a novel technology for spine navigation. Benchmark cadaveric data have demonstrated high accuracy and precision leading to recent regulatory approval. Absence of respiratory motion in cadaveric studies may positively bias precision and accuracy results and analogous investigations are prudent in live clinical scenarios. OBJECTIVE To report a technical note, accuracy, precision analysis of the first in-human deployment of this technology. METHODS A 78-yr-old female underwent an L4-S1 decompression, pedicle screw, and rod fixation for degenerative spine disease. Six pedicle screws were inserted via AR-HMD (xvision; Augmedics, Chicago, Illinois) navigation. Intraoperative computed tomography was used for navigation registration as well as implant accuracy and precision assessment. Clinical accuracy was graded per the Gertzbein-Robbins (GS) scale by an independent neuroradiologist. Technical precision was analyzed by comparing 3-dimensional (3D) (x, y, z) virtual implant vs real implant position coordinates and reported as linear (mm) and angular (°) deviation. Present data were compared to benchmark cadaveric data. RESULTS Clinical accuracy (per the GS grading scale) was 100%. Technical precision analysis yielded a mean linear deviation of 2.07 mm (95% CI: 1.62-2.52 mm) and angular deviation of 2.41° (95% CI: 1.57-3.25°). In comparison to prior cadaveric data (99.1%, 2.03 ± 0.99 mm, 1.41 ± 0.61°; GS accuracy 3D linear and angular deviation, respectively), the present results were not significantly different (P > .05). CONCLUSION The first in human deployment of the single Food and Drug Administration approved AR-HMD stereotactic spine navigation platform demonstrated clinical accuracy and technical precision of inserted hardware comparable to previously acquired cadaveric studies.