UP - logo
E-viri
Recenzirano Odprti dostop
  • The kidney is the principal...
    Lindberg, Karolina; Amin, Risul; Moe, Orson W; Hu, Ming-Chang; Erben, Reinhold G; Östman Wernerson, Annika; Lanske, Beate; Olauson, Hannes; Larsson, Tobias E

    Journal of the American Society of Nephrology, 10/2014, Letnik: 25, Številka: 10
    Journal Article

    Klotho was discovered as an antiaging gene, and α-Klotho (Klotho) is expressed in multiple tissues with a broad set of biologic functions. Membrane-bound Klotho binds fibroblast growth factor 23 (FGF23), but a soluble form of Klotho is also produced by alternative splicing or cleavage of the extracellular domain of the membrane-bound protein. The relative organ-specific contributions to the levels and effects of circulating Klotho remain unknown. We explored these issues by generating a novel mouse strain with Klotho deleted throughout the nephron (Six2-KL(-/-)). Klotho shedding from Six2-KL(-/-) kidney explants was undetectable and the serum Klotho level was reduced by approximately 80% in Six2-KL(-/-) mice compared with wild-type littermates. Six2-KL(-/-) mice exhibited severe growth retardation, kyphosis, and premature death, closely resembling the phenotype of systemic Klotho knockout mice. Notable biochemical changes included hyperphosphatemia, hypercalcemia, hyperaldosteronism, and elevated levels of 1,25-dihydroxyvitamin D and Fgf23, consistent with disrupted renal Fgf23 signaling. Kidney histology demonstrated interstitial fibrosis and nephrocalcinosis in addition to absent dimorphic tubules. A direct comparative analysis between Six2-KL(-/-) and systemic Klotho knockout mice supports extensive, yet indistinguishable, extrarenal organ manifestations. Thus, our data reveal the kidney as the principal contributor of circulating Klotho and Klotho-induced antiaging traits.