UP - logo
E-viri
Celotno besedilo
Recenzirano
  • Simulation and experimental...
    Pradhan, Nischal P.N.; Paraskeva, Themelina S.; Dimitrakopoulos, Elias G.

    Engineering structures, 04/2022, Letnik: 256
    Journal Article

    This study examines experimentally and numerically the performance of a full-scale bamboo truss footbridge. The truss is built of multi-culm bamboo axial members with bolted steel connections, joined together via steel gusset plates. The study proposes a hierarchical simulation approach with the aid of existing and new material/structural member experimental test results. Specifically, it models first the non-linear (bilinear) behaviour of the multi-culm bamboo structural members, and then using the structural member model as building block, it creates a non-linear model of the entire truss structure. The proposed numerical simulations return realistic force–displacement response of the truss structure. The axial deformation of truss members is mostly due to bolt deformation and embedment, since the bamboo culms are significantly stiffer than the bolted connections. The simulated yielding and damage modes occur at similar locations in the truss structure as those observed experimentally. The simulated sequence of damage modes is affected by the natural variability of bamboo culms. Overall, the developed simulations are promising towards predicting via a hierarchical systematic modelling approach, the non-linear response of the bamboo structures, after modelling the behaviour of its multi-culm bamboo structural members. •An original full-scale bamboo footbridge is examined numerically and experimentally.•The truss structure is modelled using a hierarchical simulation approach.•The numerical simulations consider the non-linear behaviour of structural members.•The simulated force–displacement response of the truss structure agrees with reality.•The sequence of damage modes is sensitive to the natural variability of bamboo culms.