UP - logo
E-viri
Celotno besedilo
Recenzirano
  • Brown and black carbon in B...
    Cheng, Yuan; He, Ke-bin; Engling, Guenter; Weber, Rodney; Liu, Jiu-meng; Du, Zhen-yu; Dong, Shu-ping

    The Science of the total environment, 12/2017, Letnik: 599-600
    Journal Article

    •Methanol-soluble OC represents the vast majority of total OC mass.•Brown coating on BC cores reduces the lensing effect relative to clear coating.•The reduction in lensing is overwhelmed by BrC shell absorption.•EC mass is underestimated by up to 50% due to charring-induced uncertainties.•Methanol extraction improves EC measurements by reducing char-OC formation. Display omitted Brown carbon (BrC) is increasingly included in climate models as an emerging category of particulate organic compounds that can absorb solar radiation efficiently at specific wavelengths. Water-soluble organic carbon (WSOC) has been commonly used as a surrogate for BrC; however, it only represents a limited fraction of total organic carbon (OC) mass, which could be as low as about 20% in urban atmosphere. Using methanol as the extraction solvent, up to approximately 90% of the OC in Beijing aerosol was isolated and measured for absorption spectra over the ultraviolet-to-visible wavelength range. Compared to methanol-soluble OC (MSOC), WSOC underestimated BrC absorption by about 50% at 365nm. The mass absorption efficiencies measured for BrC in Beijing aerosol were converted to the imaginary refractive indices of BrC and subsequently used to compute BrC coating-induced enhancement of light absorption (Eabs) by black carbon. Eabs attributed to lensing was reduced in the case of BrC coating relative to that caused by purely-scattering coating. However, this reduction was overwhelmed by the effect of BrC shell absorption, indicating that the overall effect of BrC coating was an increase in Eabs. Methanol extraction significantly reduced charring of OC during thermal-optical analysis, leading to a large increase in the measured elemental carbon (EC) mass and an apparent improvement in the consistency of EC measurements by different thermal-optical methods.