UP - logo
E-viri
Celotno besedilo
Recenzirano
  • Resting state Rolandic mu r...
    Triggiani, Antonio Ivano; Valenzano, Anna; Del Percio, Claudio; Marzano, Nicola; Soricelli, Andrea; Petito, Annamaria; Bellomo, Antonello; Başar, Erol; Mundi, Ciro; Cibelli, Giuseppe; Babiloni, Claudio

    International journal of psychophysiology, 05/2016, Letnik: 103
    Journal Article

    We tested the hypothesis of a relationship between heart rate variability (HRV) and Rolandic mu rhythms in relaxed condition of resting state. Resting state eyes-closed electroencephalographic (EEG) and electrocardiographic (ECG) data were recorded (10–20 System) in 42 healthy adults. EEG rhythms of interest were high-frequency alpha (10.5–13Hz) and low-frequency beta (13–20Hz), which are supposed to form Rolandic mu rhythms. Rolandic and occipital (control) EEG sources were estimated by LORETA software. Results showed a statistically significant (p<0.05, corrected) negative correlation across all subjects between Rolandic cortical sources of low-frequency beta rhythms and the low-frequency band power (LF, 0.04–0.15Hz) of tachogram spectrum as an index of HRV. The lower the amplitude of Rolandic sources of low-frequency beta rhythms (as a putative sign of activity of somatomotor cortex), the higher the LF band power of tachogram spectrum (as a putative sign of sympathetic activity). This effect was specific as there was neither a similar correlation between these EEG rhythms and high-frequency band power of tachogram spectrum (as a putative sign of parasympathetic vagal activity) neither between occipital sources of low-frequency beta rhythms (as a putative sign of activity of visual cortex) and LF band power of tachogram spectrum. These results suggest that Rolandic low-frequency beta rhythms are related to sympathetic activity regulating heart rate, as a dynamic neurophysiologic oscillatory mechanism sub-serving the interaction between brain neural populations involved in somatomotor control and brain neural populations regulating ANS signals to heart for on-going homeostatic adaptations.