UP - logo
E-viri
Celotno besedilo
Recenzirano
  • Performance and computation...
    Khattabi, M.; Benhiba, F.; Tabti, S.; Djedouani, A.; El Assyry, A.; Touzani, R.; Warad, I.; Oudda, H.; Zarrouk, A.

    Journal of molecular structure, 11/2019, Letnik: 1196
    Journal Article

    The present study is aiming to explore the effect of 4-Hydroxy-6-methyl-3-(3-quinolin-8-yl-acryloyl)-pyran-2-one (HMQP) and 3-3-(4-Dimethylamino-phenyl)-acryloyl-4-hydroxy-6-methyl-pyran-2-one (DMPHP) on mild steel (MS) corrosion in acid solution (1 M HCl). The compound was tested at various concentrations (0.001–1 mM) and four temperatures (298, 308, 318, and 328 K) to determine the optimal concentration and temperature range for the best corrosion inhibiting effect. In evaluating the inhibition efficiency, weight loss measurement, potentiodynamic polarization measurement (PDP), electrochemical impedance spectroscopy, SEM/EDS and theoretical methods were used. The inhibition efficiencies increase with increase in concentration and decreases with temperature. The maximum inhibition efficiency was found 90% and 85.4% at 298 K in the presence of 1 mM of DMPHP and HMQP respectively. The experimental adsorption data obeyed the Langmuir isotherm model. The polarization parameters suggest that DMPHP and HMQP are mixed type inhibitors. The results of the EIS study suggest that these compounds inhibit corrosion by adsorption mechanism. A good correlation between theoretical and experimental results was obtained. Display omitted •Inhibition effect of new pyran derivatives for mild steel corrosion has been studied.•Adsorption of both inhibitors follows a Langmuir isotherm.•SEM and EDS were performed for surface study.•The experimental results were well supported by DFT and Monte Carlo simulation.