UP - logo
E-viri
Celotno besedilo
Recenzirano Odprti dostop
  • Photochemical Deracemizatio...
    Williams, Jason D.; Pöchlauer, Peter; Okumura, Yoshiyuki; Inami, Yukari; Kappe, C. Oliver

    Chemistry : a European journal, May 19, 2022, Letnik: 28, Številka: 29
    Journal Article

    Dynamic deracemization processes, such as crystallization‐induced diastereomer transformations (CIDTs), offer the opportunity to combine racemization and resolution processes, to provide high yields of enantiomerically pure compounds. To date, few of these processes have incorporated photochemical racemization. By combining batch crystallization with a flow photoreactor for efficient irradiation, it is possible to perform such deracemization in an effective, scalable and high yielding manner. After applying design of experiment (DoE) principles and mathematical modelling, the most efficient parameter set could be identified, leading to excellent results in just 4 h reaction time: isolated yield of 82 % and assay ee of 96 %. Such photochemical racemization methods can serve to open new avenues for preparation of enantiomerically pure functional molecules on both small and industrially‐relevant scales. Photo‐transformation: Unlike classical enantiomeric resolution methods, crystallization‐induced diastereomer transformations (CIDTs) allow full conversion to the desired enantiomer. Using photochemical racemization for a CIDT has not before been published in the scientific literature. We report the use of an oscillatory flow reactor for efficient irradiation, allowing high yield and >95 % ee to be achieved in a reaction time of just a few hours.