UP - logo
E-viri
Recenzirano Odprti dostop
  • A clinically applicable and...
    Iriguchi, Shoichi; Yasui, Yutaka; Kawai, Yohei; Arima, Suguru; Kunitomo, Mihoko; Sato, Takayuki; Ueda, Tatsuki; Minagawa, Atsutaka; Mishima, Yuta; Yanagawa, Nariaki; Baba, Yuji; Miyake, Yasuyuki; Nakayama, Kazuhide; Takiguchi, Maiko; Shinohara, Tokuyuki; Nakatsura, Tetsuya; Yasukawa, Masaki; Kassai, Yoshiaki; Hayashi, Akira; Kaneko, Shin

    Nature communications, 01/2021, Letnik: 12, Številka: 1
    Journal Article

    Clinical successes demonstrated by chimeric antigen receptor T-cell immunotherapy have facilitated further development of T-cell immunotherapy against wide variety of diseases. One approach is the development of "off-the-shelf" T-cell sources. Technologies to generate T-cells from pluripotent stem cells (PSCs) may offer platforms to produce "off-the-shelf" and synthetic allogeneic T-cells. However, low differentiation efficiency and poor scalability of current methods may compromise their utilities. Here we show improved differentiation efficiency of T-cells from induced PSCs (iPSCs) derived from an antigen-specific cytotoxic T-cell clone, or from T-cell receptor (TCR)-transduced iPSCs, as starting materials. We additionally describe feeder-free differentiation culture systems that span from iPSC maintenance to T-cell proliferation phases, enabling large-scale regenerated T-cell production. Moreover, simultaneous addition of SDF1α and a p38 inhibitor during T-cell differentiation enhances T-cell commitment. The regenerated T-cells show TCR-dependent functions in vitro and are capable of in vivo anti-tumor activity. This system provides a platform to generate a large number of regenerated T-cells for clinical application and investigate human T-cell differentiation and biology.