UP - logo
E-viri
Recenzirano Odprti dostop
  • Erythroid-Progenitor-Target...
    Mirmiran, Arienne; Schmitt, Caroline; Lefebvre, Thibaud; Manceau, Hana; Daher, Raêd; Oustric, Vincent; Poli, Antoine; Lacapère, Jean-Jacques; Moulouel, Boualem; Puy, Hervé; Karim, Zoubida; Peoc'h, Katell; Lenglet, Hugo; Simonin, Sylvie; Deybach, Jean-Charles; Nicolas, Gaël; Gouya, Laurent

    American journal of human genetics, 02/2019, Letnik: 104, Številka: 2
    Journal Article

    Erythropoietic protoporphyria (EPP) is a hereditary disease characterized by a deficiency in ferrochelatase (FECH) activity. FECH activity is responsible for the accumulation of protoporphyrin IX (PPIX). Without etiopathogenic treatment, EPP manifests as severe photosensitivity. 95% of affected individuals present a hypomorphic FECH allele trans to a loss-of-function (LOF) FECH mutation, resulting in a reduction in FECH activity in erythroblasts below a critical threshold. The hypomorphic allele promotes the use of a cryptic acceptor splice site, generating an aberrant FECH mRNA, which is responsible for the reduced level of wild-type FECH mRNA and, ultimately, FECH activity. We have previously identified an antisense oligonucleotide (AON), AON-V1 (V1), that redirects splicing to the physiological acceptor site and reduces the accumulation of PPIX. Here, we developed a specific strategy that uses transferrin receptor 1 (TRF1) as a Trojan horse to deliver V1 to erythroid progenitors. We designed a bifunctional peptide (P1-9R) including a TFR1-targeting peptide coupled to a nine-arginine cell-penetrating peptide (CPP) that facilitates the release of the AON from TFR1 in endosomal vesicles. We demonstrated that the P1-9R/V1 nanocomplex promotes the efficient and prolonged redirection of splicing towards the physiological splice site and subsequent normalization of WT FECH mRNA and protein levels. Finally, the P1-9R/V1 nanocomplex increases WT FECH mRNA production and significantly decreases PPIX accumulation in primary cultures of differentiating erythroid progenitors from an overt EPP-affected individual. P1-9R is a method designed to target erythroid progenitors and represents a potentially powerful tool for the in vivo delivery of therapeutic DNA in many erythroid disorders.