UP - logo
E-viri
Recenzirano Odprti dostop
  • The minor gentamicin comple...
    Friesen, Westley J; Johnson, Briana; Sierra, Jairo; Zhuo, Jin; Vazirani, Priya; Xue, Xiaojiao; Tomizawa, Yuki; Baiazitov, Ramil; Morrill, Christie; Ren, Hongyu; Babu, Suresh; Moon, Young-Choon; Branstrom, Art; Mollin, Anna; Hedrick, Jean; Sheedy, Josephine; Elfring, Gary; Weetall, Marla; Colacino, Joseph M; Welch, Ellen M; Peltz, Stuart W

    PloS one, 10/2018, Letnik: 13, Številka: 10
    Journal Article

    Nonsense mutations, resulting in a premature stop codon in the open reading frame of mRNAs are responsible for thousands of inherited diseases. Readthrough of premature stop codons by small molecule drugs has emerged as a promising therapeutic approach to treat disorders resulting from premature termination of translation. The aminoglycoside antibiotics are a class of molecule known to promote readthrough at premature termination codons. Gentamicin consists of a mixture of major and minor aminoglycoside components. Here, we investigated the readthrough activities of the individual components and show that each of the four major gentamicin complex components representing 92-99% of the complex each had similar potency and activity to that of the complex itself. In contrast, a minor component (gentamicin X2) was found to be the most potent and active readthrough component in the gentamicin complex. The known oto- and nephrotoxicity associated with aminoglycosides preclude long-term use as readthrough agents. Thus, we evaluated the components of the gentamicin complex as well as the so-called "designer" aminoglycoside, NB124, for in vitro and in vivo safety. In cells, we observed that gentamicin X2 had a safety/readthrough ratio (cytotoxicity/readthrough potency) superior to that of gentamicin, G418 or NB124. In rodents, we observed that gentamicin X2 showed a safety profile that was superior to G418 overall including reduced nephrotoxicity. These results support further investigation of gentamicin X2 as a therapeutic readthrough agent.