UP - logo
E-viri
Recenzirano Odprti dostop
  • A MULTI-WAVELENGTH POLARIME...
    Casadio, Carolina; Gómez, José L.; Jorstad, Svetlana G.; Marscher, Alan P.; Larionov, Valeri M.; Smith, Paul S.; Gurwell, Mark A.; Lähteenmäki, Anne; Agudo, Iván; Molina, Sol N.; Bala, Vishal; Joshi, Manasvita; Taylor, Brian; Williamson, Karen E.; Arkharov, Arkady A.; Blinov, Dmitry A.; Borman, George A.; Paola, Andrea Di; Grishina, Tatiana S.; Hagen-Thorn, Vladimir A.; Itoh, Ryosuke; Kopatskaya, Evgenia N.; Larionova, Elena G.; Larionova, Liudmila V.; Morozova, Daria A.; Rastorgueva-Foi, Elizaveta; Sergeev, Sergey G.; Tornikoski, Merja; Troitsky, Ivan S.; Thum, Clemens; Wiesemeyer, Helmut

    The Astrophysical journal, 11/2015, Letnik: 813, Številka: 1
    Journal Article

    ABSTRACT We perform a multi-wavelength polarimetric study of the quasar CTA 102 during an extraordinarily bright γ-ray outburst detected by the Fermi Large Area Telescope in 2012 September-October when the source reached a flux of F>100 MeV = 5.2 0.4 × 10−6 photons cm−2 s−1. At the same time, the source displayed an unprecedented optical and near-infrared (near-IR) outburst. We study the evolution of the parsec-scale jet with ultra-high angular resolution through a sequence of 80 total and polarized intensity Very Long Baseline Array images at 43 GHz, covering the observing period from 2007 June to 2014 June. We find that the γ-ray outburst is coincident with flares at all the other frequencies and is related to the passage of a new superluminal knot through the radio core. The powerful γ-ray emission is associated with a change in direction of the jet, which became oriented more closely to our line of sight (θ ∼ 1 2) during the ejection of the knot and the γ-ray outburst. During the flare, the optical polarized emission displays intra-day variability and a clear clockwise rotation of electric vector position angles (EVPAs), which we associate with the path followed by the knot as it moves along helical magnetic field lines, although a random walk of the EVPA caused by a turbulent magnetic field cannot be ruled out. We locate the γ-ray outburst a short distance downstream of the radio core, parsecs from the black hole. This suggests that synchrotron self-Compton scattering of NIR to ultraviolet photons is the probable mechanism for the γ-ray production.