UP - logo
E-viri
Recenzirano Odprti dostop
  • Modeling and Rescue of RP2 ...
    Lane, Amelia; Jovanovic, Katarina; Shortall, Ciara; Ottaviani, Daniele; Panes, Anna Brugulat; Schwarz, Nele; Guarascio, Rosellina; Hayes, Matthew J.; Palfi, Arpad; Chadderton, Naomi; Farrar, G. Jane; Hardcastle, Alison J.; Cheetham, Michael E.

    Stem cell reports, 07/2020, Letnik: 15, Številka: 1
    Journal Article

    RP2 mutations cause a severe form of X-linked retinitis pigmentosa (XLRP). The mechanism of RP2-associated retinal degeneration in humans is unclear, and animal models of RP2 XLRP do not recapitulate this severe phenotype. Here, we developed gene-edited isogenic RP2 knockout (RP2 KO) induced pluripotent stem cells (iPSCs) and RP2 patient-derived iPSC to produce 3D retinal organoids as a human retinal disease model. Strikingly, the RP2 KO and RP2 patient-derived organoids showed a peak in rod photoreceptor cell death at day 150 (D150) with subsequent thinning of the organoid outer nuclear layer (ONL) by D180 of culture. Adeno-associated virus-mediated gene augmentation with human RP2 rescued the degeneration phenotype of the RP2 KO organoids, to prevent ONL thinning and restore rhodopsin expression. Notably, these data show that 3D retinal organoids can be used to model photoreceptor degeneration and test potential therapies to prevent photoreceptor cell death. Display omitted •Isogenic RP2 knockouts match the phenotype of RP2 patient-derived organoids•Retinal organoids from RP2 nulls undergo rod photoreceptor cell death•Cell death correlates with rod photoreceptor differentiation•AAV gene therapy improved photoreceptor viability and increased rhodopsin expression Cheetham and colleagues show that 3D retinal organoids lacking the RP2 protein develop rod photoreceptor degeneration that can be prevented with AAV gene augmentation for RP2.