UP - logo
E-viri
Recenzirano Odprti dostop
  • Rapid incorporation of Favi...
    Shannon, Ashleigh; Selisko, Barbara; Le, Nhung-Thi-Tuyet; Huchting, Johanna; Touret, Franck; Piorkowski, Géraldine; Fattorini, Véronique; Ferron, François; Decroly, Etienne; Meier, Chris; Coutard, Bruno; Peersen, Olve; Canard, Bruno

    Nature communications, 09/2020, Letnik: 11, Številka: 1
    Journal Article

    Abstract The ongoing Corona Virus Disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has emphasized the urgent need for antiviral therapeutics. The viral RNA-dependent-RNA-polymerase (RdRp) is a promising target with polymerase inhibitors successfully used for the treatment of several viral diseases. We demonstrate here that Favipiravir predominantly exerts an antiviral effect through lethal mutagenesis. The SARS-CoV RdRp complex is at least 10-fold more active than any other viral RdRp known. It possesses both unusually high nucleotide incorporation rates and high-error rates allowing facile insertion of Favipiravir into viral RNA, provoking C-to-U and G-to-A transitions in the already low cytosine content SARS-CoV-2 genome. The coronavirus RdRp complex represents an Achilles heel for SARS-CoV, supporting nucleoside analogues as promising candidates for the treatment of COVID-19.