UP - logo
E-viri
Celotno besedilo
Recenzirano Odprti dostop
  • Influence of scan strategy ...
    Arısoy, Yiğit M.; Criales, Luis E.; Özel, Tuğrul; Lane, Brandon; Moylan, Shawn; Donmez, Alkan

    International journal of advanced manufacturing technology, 2017/5, Letnik: 90, Številka: 5-8
    Journal Article

    Laser powder bed fusion (L-PBF) as an additive manufacturing process produces nearly fully dense nickel alloy 625 (IN625) parts with complex features. L-PBF generates surfaces and microstructure through directional solidification that can be controlled by scan strategies and selection of process parameters. This study provides experimental investigations on microstructure formation including sizes of cellular grains and growth directions of columnar grains on the nickel alloy 625 test coupons. The effects of process parameters including laser power, scan velocity, hatch distance, and scan strategy that produce various solidification cooling rates and thermal gradients during the process, which also contribute to resultant microstructure, have been analyzed. Optimization studies are conducted on several objectives to improve the productivity while controlling the process effects on the resultant microstructure using response surface regression, desirability functions, and multi-objective genetic algorithm optimization.