UP - logo
E-viri
Recenzirano Odprti dostop
  • Proton-transfer-induced 3D/...
    Kim, Hobeom; Kim, Joo Sung; Heo, Jung-Min; Pei, Mingyuan; Park, In-Hyeok; Liu, Zhun; Yun, Hyung Joong; Park, Min-Ho; Jeong, Su-Hun; Kim, Young-Hoon; Park, Jin-Woo; Oveisi, Emad; Nagane, Satyawan; Sadhanala, Aditya; Zhang, Lijun; Kweon, Jin Jung; Lee, Sung Keun; Yang, Hoichang; Jang, Hyun Myung; Friend, Richard H.; Loh, Kian Ping; Nazeeruddin, Mohammad Khaja; Park, Nam-Gyu; Lee, Tae-Woo

    Nature communications, 07/2020, Letnik: 11, Številka: 1
    Journal Article

    Abstract Perovskite light-emitting diodes (PeLEDs) based on three-dimensional (3D) polycrystalline perovskites suffer from ion migration, which causes overshoot of luminance over time during operation and reduces its operational lifetime. Here, we demonstrate 3D/2D hybrid PeLEDs with extremely reduced luminance overshoot and 21 times longer operational lifetime than 3D PeLEDs. The luminance overshoot ratio of 3D/2D hybrid PeLED is only 7.4% which is greatly lower than that of 3D PeLED (150.4%). The 3D/2D hybrid perovskite is obtained by adding a small amount of neutral benzylamine to methylammonium lead bromide, which induces a proton transfer from methylammonium to benzylamine and enables crystallization of 2D perovskite without destroying the 3D phase. Benzylammonium in the perovskite lattice suppresses formation of deep-trap states and ion migration, thereby enhances both operating stability and luminous efficiency based on its retardation effect in reorientation.