UP - logo
E-viri
Recenzirano Odprti dostop
  • Energy level tuned indium a...
    Song, Jung Hoon; Choi, Hyekyoung; Pham, Hien Thu; Jeong, Sohee

    Nature communications, 10/2018, Letnik: 9, Številka: 1
    Journal Article

    We introduce indium arsenide colloidal quantum dot films for photovoltaic devices, fabricated by two-step surface modification. Native ligands and unwanted oxides on the surface are peeled off followed by passivating with incoming atomic or short ligands. The near-infrared-absorbing n-type indium arsenide colloidal quantum dot films can be tuned in energy-level positions up to 0.4 eV depending on the surface chemistry, and consequently, they boost collection efficiency when used in various emerging solar cells. As an example, we demonstrate p-n junction between n-type indium arsenide and p-type lead sulfide colloidal quantum dot layers, which leads to a favorable electronic band alignment and charge extraction from both colloidal quantum dot layers. A certified power conversion efficiency of 7.92% is achieved without additionally supporting carrier transport layers. This study provides richer materials to explore for high-efficiency emerging photovoltaics and will broaden research interest for various optoelectronic applications using the n-type covalent nanocrystal arrays.