UP - logo
E-viri
Recenzirano Odprti dostop
  • Sensitization of glioblasto...
    Van Woensel, Matthias; Mathivet, Thomas; Wauthoz, Nathalie; Rosière, Rémi; Garg, Abhishek D; Agostinis, Patrizia; Mathieu, Véronique; Kiss, Robert; Lefranc, Florence; Boon, Louis; Belmans, Jochen; Van Gool, Stefaan W; Gerhardt, Holger; Amighi, Karim; De Vleeschouwer, Steven

    Scientific reports, 04/2017, Letnik: 7, Številka: 1
    Journal Article

    In this study, we evaluated the consequences of reducing Galectin-1 (Gal-1) in the tumor micro-environment (TME) of glioblastoma multiforme (GBM), via nose-to-brain transport. Gal-1 is overexpressed in GBM and drives chemo- and immunotherapy resistance. To promote nose-to-brain transport, we designed siRNA targeting Gal-1 (siGal-1) loaded chitosan nanoparticles that silence Gal-1 in the TME. Intranasal siGal-1 delivery induces a remarkable switch in the TME composition, with reduced myeloid suppressor cells and regulatory T cells, and increased CD4+ and CD8+ T cells. Gal-1 knock-down reduces macrophages' polarization switch from M1 (pro-inflammatory) to M2 (anti-inflammatory) during GBM progression. These changes are accompanied by normalization of the tumor vasculature and increased survival for tumor bearing mice. The combination of siGal-1 treatment with temozolomide or immunotherapy (dendritic cell vaccination and PD-1 blocking) displays synergistic effects, increasing the survival of tumor bearing mice. Moreover, we could confirm the role of Gal-1 on lymphocytes in GBM patients by matching the Gal-1 expression and their T cell signatures. These findings indicate that intranasal siGal-1 nanoparticle delivery could be a valuable adjuvant treatment to increase the efficiency of immune-checkpoint blockade and chemotherapy.