UP - logo
E-viri
Recenzirano Odprti dostop
  • Myocardial Fibrosis and Car...
    Chin, Calvin W.L., MD; Everett, Russell J., MD; Kwiecinski, Jacek, MD; Vesey, Alex T., MD, PhD; Yeung, Emily; Esson, Gavin; Jenkins, William, MD; Koo, Maria; Mirsadraee, Saeed, MD; White, Audrey C; Japp, Alan G., MD, PhD; Prasad, Sanjay K., MD; Semple, Scott, PhD; Newby, David E., MD, PhD; Dweck, Marc R., MD, PhD

    JACC. Cardiovascular imaging, 11/2017, Letnik: 10, Številka: 11
    Journal Article

    Abstract Objectives Cardiac magnetic resonance (CMR) was used to investigate the extracellular compartment and myocardial fibrosis in patients with aortic stenosis, as well as their association with other measures of left ventricular decompensation and mortality. Background Progressive myocardial fibrosis drives the transition from hypertrophy to heart failure in aortic stenosis. Diffuse fibrosis is associated with extracellular volume expansion that is detectable by T1 mapping, whereas late gadolinium enhancement (LGE) detects replacement fibrosis. Methods In a prospective observational cohort study, 203 subjects (166 with aortic stenosis 69 years; 69% male; 37 healthy volunteers 68 years; 65% male) underwent comprehensive phenotypic characterization with clinical imaging and biomarker evaluation. On CMR, we quantified the total extracellular volume of the myocardium indexed to body surface area (iECV). The iECV upper limit of normal from the control group (22.5 ml/m2 ) was used to define extracellular compartment expansion. Areas of replacement mid-wall LGE were also identified. All-cause mortality was determined during 2.9 ± 0.8 years of follow up. Results iECV demonstrated a good correlation with diffuse histological fibrosis on myocardial biopsies (r = 0.87; p < 0.001; n = 11) and was increased in patients with aortic stenosis (23.6 ± 7.2 ml/m2 vs. 16.1 ± 3.2 ml/m2 in control subjects; p < 0.001). iECV was used together with LGE to categorize patients with normal myocardium (iECV <22.5 ml/m2 ; 51% of patients), extracellular expansion (iECV ≥22.5 ml/m2 ; 22%), and replacement fibrosis (presence of mid-wall LGE, 27%). There was evidence of increasing hypertrophy, myocardial injury, diastolic dysfunction, and longitudinal systolic dysfunction consistent with progressive left ventricular decompensation (all p < 0.05) across these groups. Moreover, this categorization was of prognostic value with stepwise increases in unadjusted all-cause mortality (8 deaths/1,000 patient-years vs. 36 deaths/1,000 patient-years vs. 71 deaths/1,000 patient-years, respectively; p = 0.009). Conclusions CMR detects ventricular decompensation in aortic stenosis through the identification of myocardial extracellular expansion and replacement fibrosis. This holds major promise in tracking myocardial health in valve disease and for optimizing the timing of valve replacement. (The Role of Myocardial Fibrosis in Patients With Aortic Stenosis; NCT01755936 )