UP - logo
E-viri
Recenzirano Odprti dostop
  • An atypical class of non-co...
    Reshetnyak, Ganna; Jacobs, Jonathan M; Auguy, Florence; Sciallano, Coline; Claude, Lisa; Medina, Clemence; Perez-Quintero, Alvaro L; Comte, Aurore; Thomas, Emilie; Bogdanove, Adam; Koebnik, Ralf; Szurek, Boris; Dievart, Anne; Brugidou, Christophe; Lacombe, Severine; Cunnac, Sebastien

    Scientific reports, 12/2021, Letnik: 11, Številka: 1
    Journal Article

    Non-coding small RNAs (sRNA) act as mediators of gene silencing and regulate plant growth, development and stress responses. Early insights into plant sRNAs established a role in antiviral defense and they are now extensively studied across plant-microbe interactions. Here, sRNA sequencing discovered a class of sRNA in rice (Oryza sativa) specifically associated with foliar diseases caused by Xanthomonas oryzae bacteria. Xanthomonas-induced small RNAs (xisRNAs) loci were distinctively upregulated in response to diverse virulent strains at an early stage of infection producing a single duplex of 20-22 nt sRNAs. xisRNAs production was dependent on the Type III secretion system, a major bacterial virulence factor for host colonization. xisRNA loci overlap with annotated transcripts sequences, with about half of them encoding protein kinase domain proteins. A number of the corresponding rice cis-genes have documented functions in immune signaling and xisRNA loci predominantly coincide with the coding sequence of a conserved kinase motif. xisRNAs exhibit features of small interfering RNAs and their biosynthesis depend on canonical components OsDCL1 and OsHEN1. xisRNA induction possibly mediates post-transcriptional gene silencing but they do not broadly suppress cis-genes expression on the basis of mRNA-seq data. Overall, our results identify a group of unusual sRNAs with a potential role in plant-microbe interactions.