UP - logo
E-viri
Recenzirano Odprti dostop
  • A high-conductivity n-type ...
    Yang, Chi-Yuan; Stoeckel, Marc-Antoine; Ruoko, Tero-Petri; Wu, Han-Yan; Liu, Xianjie; Kolhe, Nagesh B; Wu, Ziang; Puttisong, Yuttapoom; Musumeci, Chiara; Massetti, Matteo; Sun, Hengda; Xu, Kai; Tu, Deyu; Chen, Weimin M; Woo, Han Young; Fahlman, Mats; Jenekhe, Samson A; Berggren, Magnus; Fabiano, Simone

    Nature communications, 04/2021, Letnik: 12, Številka: 1
    Journal Article

    Conducting polymers, such as the p-doped poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), have enabled the development of an array of opto- and bio-electronics devices. However, to make these technologies truly pervasive, stable and easily processable, n-doped conducting polymers are also needed. Despite major efforts, no n-type equivalents to the benchmark PEDOT:PSS exist to date. Here, we report on the development of poly(benzimidazobenzophenanthroline):poly(ethyleneimine) (BBL:PEI) as an ethanol-based n-type conductive ink. BBL:PEI thin films yield an n-type electrical conductivity reaching 8 S cm , along with excellent thermal, ambient, and solvent stability. This printable n-type mixed ion-electron conductor has several technological implications for realizing high-performance organic electronic devices, as demonstrated for organic thermoelectric generators with record high power output and n-type organic electrochemical transistors with a unique depletion mode of operation. BBL:PEI inks hold promise for the development of next-generation bioelectronics and wearable devices, in particular targeting novel functionality, efficiency, and power performance.