UP - logo
E-viri
Recenzirano Odprti dostop
  • Cortex‐sparing fiber dissec...
    Martino, Juan; De Witt Hamer, Philip C.; Vergani, Francesco; Brogna, Christian; de Lucas, Enrique Marco; Vázquez‐Barquero, Alfonso; García‐Porrero, Juan A.; Duffau, Hugues

    Journal of anatomy, October 2011, Letnik: 219, Številka: 4
    Journal Article

    Classical fiber dissection of post mortem human brains enables us to isolate a fiber tract by removing the cortex and overlying white matter. In the current work, a modification of the dissection methodology is presented that preserves the cortex and the relationships within the brain during all stages of dissection, i.e. ‘cortex‐sparing fiber dissection’. Thirty post mortem human hemispheres (15 right side and 15 left side) were dissected using cortex‐sparing fiber dissection. Magnetic resonance imaging study of a healthy brain was analyzed using diffusion tensor imaging (DTI)‐based tractography software. DTI fiber tract reconstructions were compared with cortex‐sparing fiber dissection results. The fibers of the superior longitudinal fasciculus (SLF), inferior fronto‐occipital fasciculus (IFOF), inferior longitudinal fasciculus (ILF) and uncinate fasciculus (UF) were isolated so as to enable identification of their cortical terminations. Two segments of the SLF were identified: first, an indirect and superficial component composed of a horizontal and vertical segment; and second, a direct and deep component or arcuate fasciculus. The IFOF runs within the insula, temporal stem and sagittal stratum, and connects the frontal operculum with the occipital, parietal and temporo‐basal cortex. The UF crosses the limen insulae and connects the orbito‐frontal gyri with the anterior temporal lobe. Finally, a portion of the ILF was isolated connecting the fusiform gyrus with the occipital gyri. These results indicate that cortex‐sparing fiber dissection facilitates study of the 3D anatomy of human brain tracts, enabling the tracing of fibers to their terminations in the cortex. Consequently, it is an important tool for neurosurgical training and neuroanatomical research.